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Abstract

The current image quality metrics work on the assumption that an image con-

tains single and simulated distortions which are not representative of real camera

images. In this paper we address the problem of quality assessment of camera

images from two respects, natural scene statistics (NSS) and local sharpness, and

associated three types of features. The first type of four features measures the nat-

uralness of an image, inspired by a recent finding that there exists high correlation

between structural degradation information and free energy entropy on natural

scene images and this regulation will be gradually devastated as more distortions

are introduced. The second type of four features originates from an observation

concerning the NSS that a broad spectrum of statistics of distorted images can

be caught by the generalized Gaussian distribution (GGD). Both the two types of

features above belong to the NSS-based models, but they come from the consider-

ations of local auto-regression (AR) and global histogram, respectively. The third

type of three features focuses on estimating the local sharpness, which works by

computing log-energies in discrete wavelet transform domain. Finally our quality
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metric is achieved via a SVR-based machine learning tool, and its performance is

proved to be statistically better than state-of-the-art competitors on the CID2013

database dedicated to the quality assessment of camera images.

Keywords: Image quality assessment (IQA), camera images, blind/no-reference

(NR), natural scene statistics (NSS), local sharpness, free energy theory,

structural degradation model

1. Introduction

With the soaring development of mobile devices and network, an enormous

amount of images are being presented to users every moment. It is challenging

to evaluate and control the quality of digital photographs. At the same time, a

supreme effort is still made by camera manufacturers to improve the quality of

photography. As thus, it is in an urgent pursuit of finding ways to automatically

predict the perceptual quality of camera images.

In the past few years, as for the issue of image quality assessment (IQA), many

objective metrics of the ability to faithfully evaluate the quality of distorted im-

ages have been developed with applications to compression [1, 2, 3] , transmission

[4], enhancement [5, 6, 7], tone mapping [8] and image forensics [9, 10, 11]. If

the distortion-free image which distorted image can be compared with is avail-

able, the metric is called full-reference (FR) IQA [12]. But in most cases only the

distorted image is available, this type of IQA models are called no-reference (NR)

IQA. Furthermore, according to the requirement of prior knowledge of the images

or their distortions, current NR IQA algorithms also can be further classified into
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two categories, namely general-purpose metrics and distortion-specific metrics.

Typical distortion-specific blind quality measures are devoted to ringing effec-

t [13], blockiness [14], sharpness/blurriness [15, 16, 17, 18, 19, 20, 21, 22, 23],

etc. Ferzli et al. proposed a blur metric by integrating just noticeable blur into

a probability summation model to evaluate the amount of blurriness in distort-

ed images, dubbed as just-noticeable blur metric (JNB) [16]. Inspired by JNB,

Narvekar et al. pooled the localized probability of blur detection by means of

a cumulative probability of blur detection to measure distorted images [17]. In

[18], the slope of the magnitude spectrum and the total spatial variation is used

to create sharpness map to be used to predict image blurriness. Thereafter, Vu et

al. [19] used the log-energies in high frequency wavelet subbands to predict the

global and local sharpness of distorted image. Very recently, few attempts to esti-

mate camera images estimations have been made. Nuutinen et al. [24, 25] tried to

search for efficient feature sets for predicting visual quality of real photographs.

In [26], the authors proposed an approach by utilizing NSS modeling as well as

the consumer-centric, quality aware interpretable features for real consumer-type

images quality prediction. They also presented a framework [27] for blind quality

consumer content images evaluation.

In recent years, general-purpose NR-IQA metrics have been an active research

field [28, 29, 30, 31, 32, 33, 34, 36, 37]. In [28], the authors proposed a two-

step framework to evaluate a distorted image based on natural scene statistics

(NSS), in which the first step is to estimate the existence of distortion types in the

image and the second one is to evaluate the distorted image through each of these

distortions. Natural image quality evaluator (NIQE) [29] was devised to predict
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the deviations from statistical regularities observed in natural images without any

prior knowledge of the images or their distortion types. Also inspired by some

underlying statistics, Saad et al. [30] used discrete cosine transform coefficients

to extract features, and then predicted image quality scores with a simple Bayesian

inference approach. Scene statistics of locally normalized luminance coefficients

was used by blind/referenceless image spatial quality evaluator (BRISQUE) [31]

to measure possible losses of “naturalness” in the image referable to the presence

of distortions and provide an overall quality measure of the distorted images.

Although aforementioned metrics perform well on the popular databases such

as the LIVE database [38], they do not perform as well on real photographs which

are subjected to many different distortion sources and types. Because these image

quality metrics are based on the assumption that an image contains single or sim-

ulated distortions which are not representative of what one encounters in practical

real scenarios [26]. Camera images contain more practical distortions unlike most

distortions present in the popular databases.

Compared with the previous works, to the best of our knowledge, this paper is

the first to propose to a modular framework for IQA of camera images based on the

NSS regulation and local sharpness assessment. And furthermore, the proposed

blind quality index for camera images (BQIC) has acquired a substantially high

performance, it is the only metric with the correlation coefficient of beyond 0.8 in

both linear and monotonic performance indices.

The paper is structured as follows. In section II, we present the details of the

BQIC algorithm. Section III provides performance measures and comparisons of

our BQIC and state-of-the-art blind quality metrics on the CID2013 database [39]
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Figure 1: The framework of our proposed blind IQA algorithm.

dedicated to the IQA of camera images. General conclusions and future works are

given in Section IV.

2. Proposed Blind Quality Measure

Selecting appropriate features plays an important part in IQA. The features of

the proposed metric consists of three parts. The flowchart of the proposed NR

IQA metric is outlined in Fig. 1.

The first group of features is extracted based on the free-energy principle,

which is recently developed in brain theory and neuroscience [35], and struc-

ture degradation measurement [40]. The free-energy principle operates under the

assumption that there always exists a difference between an input genuine visual

signal and its processed one by human brain. Human perceptual process is manip-

ulated by an internal generative model, which can infer predictions of the input

visual signal and avoid the residual uncertainty information. On this basis, the
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psychovisual quality of a scene is defined by both the scene itself and the output

of the internal generative model. It differs from most traditional methods which

are based on signal decomposition.

To facilitate operation, we assume that the internal generative model G for

visual perception is parametric, which infers perceived scenes by adjusting the

parameter vector x. Given an input visual signal I , the joint distribution p(I, x)

over the space of model parameters x can compute the “surprise”1 information

(measured by entropy) of the given image. The joint distribution function can be

computed as follows:

− log p(I) = − log

∫
p(I, x)dx. (1)

However, the joint distribution p(I, x) is difficult to be directly measured accord-

ing to current knowledge. As thus, a dummy term q(x|I) that is an auxiliary pos-

terior distribution of the model parameters given the image is brought into both

the numerator and the denominator. So we can rewrite Eq. (1) to be

− log p(I) = − log

∫
q(x|I)

p(I, x)

q(x|I)
dx. (2)

Next, Jensen’s inequality is used to apply to Eq. (2), and we have

− log p(I) ≤ −
∫
q(x|I) log

p(I, x)

q(x|I)
dx (3)

1The free energy principle works on the assumption that all biological agents resist the natural

tendency to disorder in an ever-changing environment. Therefore, it suggests that biological agents

can somehow violate the second law of thermodynamic by keeping their internal states at low

entropy level to maintain themselves within some physiological bounds. This process is to avoid

encountering “surprise” under different environment [35].
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and the right side of Eq. (3) is defined as the free energy:

J(x) = −
∫
q(x|I) log

p(I, x)

q(x|I)
dx. (4)

Eq. (4) expresses the free energy J(x) to be energy minus entropy. And the free

energy estimation of the image I can be expressed by

F (I) = J(x̂) with x̂ = arg min
x
J(x). (5)

Any quantitative application of Eq. (5) operates under the assumption that the

brain generative model excites. A model with higher expressive power approxi-

mates the brain better but incurs higher computational complexity. In this paper

we choose the linear AR model as the generative model for its effectiveness and

simplicity to describe natural scenes [22, 36]. The AR model is defined as

yn = χk(yn)θ + εn (6)

where yn is a pixel of the distorted image, χk(yn) is a row-vector consisting of

k nearest neighbors of yn, θ = (θ1, θ2, ..., θk)
T is a vector of AR coefficients,

and εn is the error term. Then, the predicted version of the input distorted visual

signal I can be estimated by χk(yn) · θopt, where θopt is the optimal estimate

of AR parameters for yn based on the least square method. Consequently, the

estimated AR parameters can be used to represent the distribution of the model

parameters q(x|I). In order to demonstrate the distribution of model parameters

exhibits a center-peaked appearance, a natural image and its posterior distribution

of the model parameters q(x|I) are shown in Fig.2. According to [41], the total

description length of I with the kth-order AR model can be expressed by

L(x̂) = − log p(I|x̂) +
k

2
logM (7)
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(a) (b)

Figure 2: Illustration of the posterior distribution of the model parameters q(x|I) by: (a) a

natural image; (b) the associated distribution of q(x|I) computed using the AR model.

where M is the number of pixels. And in the large sample limit M →∞, the free

energy is the total description length:

J(x̂) = − log p(I|x̂) +
k

2
logM with M →∞. (8)

We choose a fixed-model order, and thus the second term k
2

logM is constant and

can be ignored in the quality evaluation.

It is known that low-pass filtered versions of the distorted images have dif-

ferent degrees of spatial frequency decrease. The reduced-reference structural

degradation model (SDM) [40] measures the similarity information between orig-

inal and distorted images. According to the definition of the SSIM [42], µI and

σI as the local mean and variance of Ir with a 2D circularly-symmetric Gaussian

weighting function w = {w(k, l)|k = −K, ...,K, l = −L, ..., L}, which satisfies

sum(w) = 1 and var(w) = 1.5 (the function of sum(·) and var(·) are used to

compute sum and variance values respectively). The structural degradation infor-
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mation is thus given by

S(I) = E(
σ(µI µ̄I) + C

σ(µI)σ(µ̄I) + C
) (9)

where µ̄I and σ̄I represent the mean intensity and the standard deviation; σ(µI µ̄I)

and σ(σI σ̄I) represent the local covariance the same as the definition in SSIM [42];

E(·) is a direct average pooling; C is a small constant to avoid instability when

denominator is very close to zero. Because different sizes of Gaussian weighting

functions introduce different amounts information, this paper picks three pairs of

(K,L) as (1, 1), (3, 3) and (5, 5). And for noise images of poorer quality, SDM’s

predictions are quite distinct for subjective scores. We thereby modify S(I) to

keep different types of distortions consistent:

S̃(I) =


−S(I) if F (I) > T

S(I) otherwise
(10)

where the threshold T = 5 is chosen empirically to avoid SDM’s predicted scores

being not consistent with the quality of image for specific distortion types, e.g.

noise and blur. We redefine S̃ for different values of (K,L) with K = L =

1, K = L = 3 and K = L = 5. An approximate linear relationship between the

structural degradation information and the free energy feature of original image in

the LIVE database [38] has been revealed in [43]. In order to further validate this,

we randomly selected thirty images from Berkeley database (as shown in Fig. 3)

[44] and draw the scatter plots in Fig. 4. The linear dependence feature provides

possibility to describe distorted images without primitive image. According to

[40], we define the linear regression model as follows:

F (Ir) = α · S̃(Ir) + β (11)
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Figure 3: The selected 30 images from the Berkeley database [44].

where Ir indicates the original image; α and β are gained by the least square

algorithm. Their values are tabulated in Table I. We then reduce the dependence

of original references by using FSI = F (Id)− (α · S̃Id + β) to be defined as the

features, where Id indicates the distorted image. Note that FSI values of high-

quality images are quite nearly to zero, whereas they will be far from zero when

distortions become larger. Finally, we supplement the free energy entropy as the

final feature of group one, because it presents good performance on noisy and

blurred images.

The second type of features comes from a classical NSS-based model [29]. We
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S̃1(Ir) S̃3(Ir) S̃5(Ir)

Figure 4: Scatter plots of the structural degradation information S̃s(Ir) (s = {1, 3, 5}) vs.

the free energy feature F (Ir) on thirty images in the Berkeley database [44]. The straight

lines are fitted with the least square method.

Table 1: The estimates of α, β for S̃ (s = {1, 3, 5}).

α β

S̃1 -12.3989 14.8080

S̃3 -13.0193 14.9884

S̃5 -13.2793 15.1943

can estimate decorrelating effect by exerting a local non-linear operation on log-

contrast luminance to remove local mean displacements from zero log-contrast

and to normalize the local variance of the log-contrast, as used in some popular

blind IQA metrics [29, 30, 31, 36, 37]. It was found that the normalized luminance

values of natural images without distortions appears Gaussian characteristic [45],

and moreover, the distribution will be broken when the images suffer distortions,

as illustrated in Fig. 5.

However, a wider spectrum of statistics of distorted images can be effectively

caught by the generalized Gaussian distribution (GGD). The probability density
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Figure 5: Histogram of normalized coefficients for a natural undistorted image. ORG

denotes the original image. JP2K denotes JPEG2000 compression. JPEG denotes JPEG

compression. WN denotes additive white Gaussian noise. Gblur denotes Gaussian blur.

function of GGD defined as following :

f(x;µ, α, β) =
α

2βΓ( 1
α

)
exp

(
−
(
|x− µ|
β

)α)
α > 0 (12)

where µ is the mean, α is the shape parameter that controls the “shape” of the

distribution and

β = σ

√
Γ( 1

α
)

Γ( 3
α

)
(13)

and the gamma function Γ(·) is given by:

Γ(z) =

∫ ∞
0

tz−1e−tdt (14)

where the parameter σ is defined as standard deviation. In this paper, we deploy

the GGD with zero mean to fit the mean subtracted contrast normalized (MSC-

N), because MSCN is global-based NSS and MSCN coefficient distributions are

symmetric [45]. The GGD with zero mean is defined as following:

f(x;α, β) =
α

2βΓ( 1
α

)
exp

(
−
(
|x|
β

)α)
. (15)
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For every image, two pairs of parameters (α,σ2) from a GGD fit of the MSCN

coefficients. We used the method in [46] to estimate parameters (α,σ2). One

pair is from the original scale, another is at the reduced resolution via a low-pass

filtering by a downsampling with the factor of 2. These form the second group of

four features which will be used to capture image distortion.

The third group of features is the modified patch-based image sharpness mea-

sure [19]. First, using Cohen-Daubechies-Feauveau filters [47] to decompose the

input image signal into discrete wavelet transform (DWT) subbands only with

one level. Then computing the Log-energy of each subband of discrete wavelet

transform (DWT) as follows:

EXY = log10(1 +
1

M

∑
i,j

S2
XY (i, j)) (16)

where SXY is either SHH , SHL or SLH , and SLL is not used, and M is the number

of DWT coefficients in the subband. The addition of one is used to avoid negative

values of EXY . In [19], the authors measured the total log-energy at each level via

En = (1− α)
ELHn + EHLn

2
+ αEHHn (17)

where the parameter α is 0.8. But according to [48], the authors used predictable

sinusoidal, triangular target motions and randomized step-ramp stimuli to com-

pare smooth pursuit in the horizontal and vertical planes. It is confirmed that

most normal subjects show higher gain values during horizontal than during ver-

tical tracking. And Grönqvist [49] also observed that vertical tracking inferior to

horizontal tracking and the proportion of smooth pursuit increased with age. So

horizontal tracking and vertical tracking are asymmetry. Thorough experiments
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are performed to give the result that LH, HL and HH appears auto-adaptive non-

linear relationship. So we separately consider using ELHn, EHLn and EHHn as

features, instead of directly combining them via Eq. (16). Finally, we use the

above algorithm in a block-based way to obtain the sharpness index across the

entire image. The composition procedure is similar to that in [19]. A collection

of local sharpness values are computed using the DWT coefficients corresponding

to each 16 × 16 block of the image, and the index is computed by taking the root

mean square of the 1% largest values of the block sharpness indices.

After feature extraction, we need to find a proper way that can map the feature

space to subjective MOS, then utilize it to produce objective quality scores. In

order to make a fair comparison with other NR IQA methods, we use a support

vector regression module SVR [50] to generate a proper mapping that is learnt

from the feature score to human visual system. SVR has been widely used in the

IQA field [30, 31, 34, 36]. Here the SVR with a radial basis function (RBF) is

adopted by using the LIBSVM package [51].

3. Experimental Results

3.1. Experimental Settings

In this section, the CID2013 database [39] is used as testing bed for perfor-

mance evaluation and comparison. The CID2013 database consists of 6 image

sets with 36 scenarios and associated 474 distorted images that are captured by

79 different digital cameras. The images in the CID2013 database don’t include

so-called reference images since they were taken by real cameras, which makes

it impossible to use FR- and RR-IQA methods. As for our training-based BQIC

14



metric, we use a similar method to that used in [52]. To be specific, the predicted

rating for each image was determined by training an SVR on other 473 images

via a leave-one-out cross-validation methodology [52]. We test the performance

of the proposed blind BQIC metric from three aspects. The first and second are

to demonstrate the effectiveness of our BQIC approach compared to state-of-the-

art general-purpose and specific-distortion NR-IQA metrics2. The last aspects is

to analyze and compare the performances of three groups of features used in the

BQIC model with each other.

In this paper we follow the video quality experts group (VQEG)’s suggestion

and employ a five-parameter nonlinear fitting function to map objective quality

scores to subjective human ratings [53]:

f(x) = β1

(
1

2
− 1

1 + eβ2(x−β3)

)
+ β4x+ β5 (18)

where x denotes the predicted score; f(x) denotes the corresponding subjective

score; βi {i = 1, 2, 3, 4, 5} are the parameters to be fitted. Next, four commonly

used criterions are chosen for performance measure.

The first Spearman’s rank ordered correlation coefficient (SRCC) is adopted

to evaluate the prediction monotonicity. The second Kendall’s rank correlation

coefficient (KRCC) is another metric used to evaluate the prediction monotonicity.

The third Pearson’s (linear) correlation coefficient (PLCC) is adopted to evaluate

the prediction accuracy. The last root mean square error (RMSE) is another metric

to evaluate the prediction accuracy. A good IQA method is expected to produce

2Only the metrics whose codes are publicly available are used for comparison in our work. All

the source codes of testing IQA methods were obtained from their authors or websites.
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high SRCC, KRCC and PLCC values, as well as low RMSE values.

3.2. Comparison with General-Purpose NR-IQA Metrics

Recently, several effective general-purpose NR IQA metrics have been pro-

posed to evaluate distorted images without knowing the distortion types. In this

section, we will demonstrate and compare the performance of the proposed model

with the top general-purpose NR IQA approaches, which are given as follows.

• BLIINDS-II [30], using Bayesian inference model to predict image quality

scores based on features extracting from the natural scene statistics (NSS) model

of the image discrete cosine transform coefficients (DCT). A total of 24 features

were extracted over three scales with 8 features in each scale.

• BRISQUE [31], working based on the principle that natural images have

certain regular statistical properties that are measurably modified by distortions.

The author used spatial natural scene statistics of locally normalized luminance

coefficients to quantify possible losses of naturalness in the distorted image. A to-

tal of 36 features were used to identify distortions. We also used those 36 features

to test the performance of the BRISQUE on the CID2013.

• SISBLIM [33], inspiring by an early human visual model and free energy

based brain theory. The algorithm first predict the noise variance, and apply a way

to image denoising based on the above estimated noise level. Then utilizing free

energy to measure the joint effect. Finally, the image quality score is acquired by

an appropriate integration of estimates of noise, blur, JPEG compression artifacts

and the joint effect.

• NFERM [36], constructing a collection of features based on free energy and
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Table 2: The PLCC, SRCC, KRCC and RMSE results of our BQIC metric and state-of-
the-art general-purpose NR-IQA methods on CID2013. We emphasize the best performed
NR IQA algorithm by bold font.

CID2013 PLCC SRCC KRCC RMSE

BLIINDS-II [30] 0.6393 0.6346 0.4539 17.4088

BRISQUE [31] 0.7810 0.7844 0.5902 14.1402

SISBLIM [33] 0.7010 0.6533 0.4762 16.0947

NFERM [36] 0.7933 0.7880 0.5943 13.7833

IL-NIQE [37] 0.4274 0.3065 0.2101 20.4687

BQIC (Proposed) 0.8285 0.8207 0.6291 12.6759

classical human visual system (HVS). A total of 23 features were used to evaluate

the image quality.

• IL-NIQE [37], by integrating the features of natural image statistics derived

from multiple cues, then a multivariate Gaussian model is created by learning a

set of pristine natural images. A Bhattacharyya-like distance is used to measure

the quality of each distorted image patch, then an overall quality score is obtained

by average pooling.

A logistic nonlinear function is exploited before calculating PLCC and RMSE.

Table II summarizes the performance results on the CID2013 database. One can

see from Table II that the proposed BQIC metric has gained the highest PLCC,

SRCC and KRCC values as well as the smallest RMSE value. None of those

compared metrics performs better than the proposed metric, namely the proposed

BQIC model correlates highly with human visual perception to image distortions.

We also show the scatter plots of the subjective scores versus the predicted scores

using different metrics in Fig. 6. A good metric is expected to produce scatter
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Figure 6: Scatter plots of objective scores generated by BLIINDS-II [30], BRISQUE [31],
SISBLIM [33], NFERM [36], IL-NIQE [37] and our proposed BQIC metric versus sub-
jective scores reported by CID2013 databases after nonlinear mapping.

points that are closed to the fitted curve. It can be easily found from Fig. 6 that

the proposed metric produces the best fitting results on the CID2013 database.

3.3. Comparison with Specific-Distortion NR-IQA Metrics

Sharpness is one of the most important factors in the problem of camera IQA.

In this section, we demonstrate and compare the performance of the proposed

model with 5 popular blind sharpness algorithms below.

• BLUR [15], measuring blur based on an analysis of the smoothing or smear-

ing effect of filtering or compression on sharp edges and adjacent regions in an

image. The algorithm first find strong vertical edges in the original image or the

distorted image, then finding the start and end position of the edge for each corre-

sponding edge in the processed image to calculate local blur. And the global blur

is acquired by averaging the local blur values over all edges found.
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Table 3: The PLCC, SRCC, KRCC and RMSE results of our BQIC metric and state-of-
the-art distortion-specific blind algorithms on CID2013. We highlight the top one.

CID2013 PLCC SRCC KRCC RMSE

BLUR [15] 0.5287 0.5515 0.4063 19.1543

S3 [18] 0.3277 0.2936 0.2019 21.3902

FISH [19] 0.7038 0.6822 0.4956 16.0827

FISHbb [19] 0.7553 0.7383 0.5461 14.8375

ARISM [22] 0.4877 0.4408 0.3090 19.7651

BQIC (Proposed) 0.8285 0.8207 0.6291 12.6795

• S3 [18], utilizing a weighted geometric mean to combine the adjusted mea-

sures of the slope of the magnitude spectrum and the total spatial variation of the

distorted images.

• FISH and FISHbb [19], operating by first decomposing the input image via

DWT, then computing the log-energies of the DWT subbands at each level, and

finally, a scalar index is obtained by a weighted function of the three-level log-

energies. It is also possible to operate the algorithm in a block-based fashion,

namely FISHbb, acquiring a certain performance gain.

• ARISM [22], calculating the energy and contrast differences in the local-

ly estimated autoregressive coefficients, and then utilizing percentile pooling to

acquire the overall score of the image sharpness.

To estimate the performance of the proposed BQIC metric and aforementioned

specific-distortion blind algorithms, experiments are conducted on the CID2013

database. Table III lists the performance of the comparison methods and Fig.7

shows the scatter plots between the predicted scores and the corresponding MOSs,
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Figure 7: Scatter plots of objective scores generated by BLUR [15], S3 [18], FISH and
FISHbb [19], ARISM [22] and our proposed metric BQIC versus subjective scores report-
ed by CID2013 databases after nonlinear mapping.

where a point denotes one image. It can be clearly observed from both Table III

and Fig. 7 that the proposed IQA algorithm outperforms the prevailing sharpness

metrics compared in this paper.

3.4. Statistical Significance Comparison

Apart from direct comparisons with general-purpose and distortion-specific

metrics, we further evaluate the statistical significance via the F-test [54], which

is based on the variance-based hypothesis testing shows additional information

regarding the relative performance of different quality algorithms. In order to

make a statistically sound judgment regarding superiority of one objective metric

against another, the F-test computes the prediction residuals between the convert-

ed objective scores and the subjective ratings. Fig. 8 shows the computed F-test

results on CID2013. A symbol of ‘1’ indicates that the method performs better
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Figure 8: Statistical significance comparison between our BQIC and other IQA methods
with F-test.

than that of the column, ’0’ denotes that two objective methods are indistinguish-

able, and ‘-1’ denotes the method is statistically worse than that of the column.

We can find from Fig. 8, where we adopt different colors to label different types

of results for readers’ conveniences, that our model is statistically superior to most

NR/blind models, except statistically indistinguishable from NFERM and FISHbb.

3.5. Analysis of BQIC’s Components

Considering that the proposed BQIC is composed of three groups of features,

it is necessary to analyze the performance of each group of features. The first

group consists of 4 features, the second group consists of 4 features, and the last

group includes 3 features. In order to identify how well the features correlate with

human judgment of quality, we list the values of PLCC, SRCC, KRCC and RMSE

in Table IV and the associated scatter plots in Fig. 9.

We are able to draw important findings from performance comparisons above.

Each group of features used in BQIC performs well. For example, the SRCC
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Table 4: The PLCC, SROCC , KRCC and RMSE results of the three group features used
by BQIC on the whole 474 images in CID2013 databases.

CID2013 PLCC SROCC KRCC RMSE

BQIC1 0.6760 0.6625 0.4756 16.6828

BQIC2 0.6362 0.6380 0.4643 17.4681

BQIC3 0.7509 0.7296 0.5378 14.9512

BQIC 0.8285 0.8207 0.6291 12.6795

of the first group is 0.6625, the second group is 0.6380, and the third group is

0.7296. In comparison, the SROCC of combining the three groups features can

reach to 0.8207, performance improvement is larger than 20.1%, 24.4% and 9.4%

relative to each group of features. Moreover, it is necessary to point out that three

groups of features in BQIC use different strategies. The first group of features is

motivated by local AR model, and it is derived from a novel strategy of combining

two effective reduced-reference IQA algorithms. The second group is based on

global histogram to quantify the possible losses of naturalness in distorted images.

And third group focuses on estimating the image sharpness. Thus, the whole three

groups of features have even better performance.

3.6. Extension to Assessment of Medical Images

In medical imaging, the image quality is also important. However, the image

is commonly noise for some medical imaging. Therefore, accurate medical im-

ages quality assessment methods are highly desired which can validly control and

monitor the perception quality of medical images. In this paper we further extend

our proposed method to the medical images assessment. We conduct two group
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Figure 9: Scatter plots of objective scores generated by the first group features, the second
group features, the third group features and all the total features versus subjective scores
reported by CID2013 databases after nonlinear mapping.

experiments on the medical images to validate the proposed method.

The first group experiment is that we employ a standard normal pdf of variance

σ2
i to the original medical images. Then using our method to predict objective

quality scores. Fig. 10 shows the objective predicted scores of the original medical

image and the corresponding distorted version (σ2
1 = 0.04, σ2

2 = 0.08) and Fig. 11

shows the predicted objective predicted scores of the original medical image and

the corresponding distorted version (σ2
1 = 0.02, σ2

2 = 0.06). It can be obviously

observed from the Figs. 10-11 that the proposed method produces the objective

scores highly consistent with the HVS.

The second group experiment is that we utilize our method to assess the re-

alistic Anterior Segment Optical Coherence Tomography (AS-OCT) images [55]
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(a) Original S = 54.5050 (b) σ12 = 0.04 S = 51.3103 (c) σ22 = 0.08 S = 50.2752

Figure 10: Three medical images and their objective predicted scores for images with
different level noise.

(a) Original S = 56.3590 (b) σ12 = 0.02 S = 53.7173 (c) σ22 = 0.06 S = 52.9580

Figure 11: Three medical images and their objective predicted scores for images with
different level noise.

which were provided by the Department of Ophthalmologyin the National Uni-

versity Hospital, Singapore (NUHS). The total number of AS-OCT images used

in the test is 209 which can be categorized as good, fair and poor. The number of

poor AC-OCT images is 29, and the number of good and fair AC-OCT images is

180. The implement of subjective quality assessment is similar as [55]. Except

the images with artifacts resulting from movements of eyelids and corneal scars,

we think the images are acceptable for testing anterior segment characteristics.

Therefore, we test the accuracy of our proposed method on differentiate the poor
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AS-OCT images from the fair and good images. To specify, for every AS-OCT

image, we extract 11 features using the proposed BQIC method, then the predict-

ed rating for each AS-OCT image was determined by training an SVR on other

208 images via a leave-one-out cross-validation methodology. We categorize the

images into two classes. One includes images marked with “good” and “fair”

which we consider them as “feasible”, while the other one includes other im-

ages marked with “poor” denoted as “infeasible”. The proposed method achieves

88.04% accuracy for identifying the feasibility of AS-OCT images. It confirms

that the proposed algorithm is effective for evaluating of realistic medical images.

4. Conclusion

With the development of networked hand-held devices, a large mount of visual

data are presented to users. Many efforts have been made to ensure the end con-

sumers is presented with a satisfactory quality of experience (QoE). Therefore,

assessment of camera images is a significant and meaningful topic in scientific

research and applicational development of digital image processing. However, it

is struggle to handle the images with many concurrent distortion types for current

blind quality metrics. Effective objective quality metrics are expected.

In this paper we have put forward a blind quality index for camera images

with natural scene statistics and patch-based sharpness assessment. A comparison

of our BQIC with state-of-the-art general-purpose NR-IQA methods and popular

blind distortion-specific measures is conducted on CID2013 database. The exper-

iment results have proved the superior performance of the proposed blind quality

measure on the CID2013 database. Besides the substantially high prediction ac-
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curacy, it is worthy to emphasize three points below. First, experimental results

prove the superiority of our proposed method on CID2013 over popular NR-IQA

models and blind sharpness measures. Second, the proposed BQIC needs mere-

ly 11 features, far less than the majority of general-purpose train-based NR-IQA

metrics. Third, to the best of our known, our proposed method is the first to pro-

pose modular framework for camera images based on nature scene statistics and

sharpness assessment.
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